Металлы щелочные и их соединения – Урок №47. Щелочные металлы. Положение щелочных металлов в периодической системе и строение атомов. Нахождение в природе. Физические и химические свойства. Применение щелочных металлов и их соединений.

Содержание

Химия щелочных металлов и их соединений

Щелочные металлы

1. Положение в периодической системе химических элементов
2. Электронное строение и закономерности изменения свойств
3. Физические свойства
4. Нахождение в природе
5. Способы получения
6. Качественные реакции
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и фосфором
7.1.3. Взаимодействие с водородом
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с углеродом
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с водой
7.2.2. Взаимодействие с минеральными кислотами
7.2.3. Взаимодействие с серной кислотой
7.2.4. Взаимодействие с азотной кислотой
7.2.5. Взаимодействие со слабыми кислотами
7.2.6. Взаимодействие с солями

Оксиды щелочных металлов
 1. Способы получения
 2. Химические свойства

2.1. Взаимодействие с кислотными и амфотерными оксидами
2.2. Взаимодействие с кислотами
2.3. Взаимодействие с водой
2.4. Взаимодействие с кислотами

Пероксиды щелочных металлов
 1. Химические свойства
1.1. Взаимодействие с водой
1.2. Взаимодействие с кислотными и амфотерными оксидами
1.3. Взаимодействие с кислотами
1.4. Разложение
1.5. Взаимодействие с восстановителями
1.6. Взаимодействие с окислителями

Гидроксиды щелочных металлов (щелочи)
 1. Способы получения
 2. Химические свойства
2.1. Взаимодействие щелочей с кислотами
2.2. Взаимодействие щелочей с кислотными оксидами
2.3. Взаимодействие щелочей с амфотерными оксидами и гидроксидами
2.4. Взаимодействие щелочей с кислыми солями
2.5. Взаимодействие щелочей с неметаллами
2.6. Взаимодействие щелочей с металлами
2.7. Взаимодействие щелочей с солями
2.8. Разложение щелочей
2.9. Диссоциация щелочей

2.10. Электролиз щелочей

Соли щелочных металлов 

Щелочные металлы

Положение в периодической системе химических элементов

Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.

Электронное строение щелочных металлов и основные свойства 

Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns1, на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.

Рассмотрим некоторые закономерности изменения свойств щелочных металлов.

В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус

, усиливаются металлические свойства, ослабевают неметаллические свойства, уменьшается электроотрица-тельность.

Физические свойства 

Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.

Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.

Нахождение в природе

Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочные металлы:

Поваренная соль, каменная соль, галитNaCl — хлорид натрия

Сильвин KCl — хлорид калия

Сильвинит NaCl · KCl

Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия

Едкое кали KOH — гидроксид калия

Поташ K2CO3 – карбонат калия

Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:

Способы получения 

Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения темпе-ратуры плавления смеси):

2LiCl = 2Li + Cl2

Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl (расплав) → 2Na + Cl2

Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).

Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:

KCl + Na = K↑ + NaCl

KOH + Na = K↑ + NaOH

Цезий можно получить  нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl → 2Cs + CaCl2

В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.

Качественные реакции

Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов.

Цвет пламени:
Liкарминно-красный
Na — жѐлтый
Kфиолетовый
Rbбуро-красный
Csфиолетово-красный

Химические свойства

1. Щелочные металлы — сильные восстановители. Поэтому они реагируют почти со всеми неметаллами.

1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:

2K  +  I2  =  2KI

1.2. Щелочные металлы реагируют с серой с образованием сульфидов:

2Na  +  S  =  Na2S

1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения —

фосфиды и гидриды:

3K    +    P    =   K3P

2Na  +  H2  =  2NaH

1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:

6Li   +  N2  =  2Li3N

Остальные щелочные металлы реагируют с азотом при нагревании.

1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

2Na   +   2C    =    Na2C2

1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид

, калий и остальные металлы – надпероксид.

4Li   +   O2   =   2Li2O

2Na  +  O2  =  Na2O2

K   +   O2   =   KO2

Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.

2. Щелочные металлы активно взаимодействуют со сложными веществами:

2.1. Щелочные металлы бурно (со взрывом) реагируют с водой. Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

Например, калий реагирует с водой очень бурно:

2K0 + H

2+O = 2K+OH + H20

Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например, натрий бурно реагирует с соляной кислотой:

2Na  +  2HCl  =  2NaCl  +  H2

2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.

Например, при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:

8Na  +  5H2SO4(

конц.)  → 4Na2SO4  +  H2S  +  4H2O

2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодейст-вии с концентрированной азотной кислотой образуется оксид азота (I):

8Na + 10HNO3 (конц) → N2O + 8NaNO3 + 5H2O

С разбавленной азотной кислотой образуется молекулярный азот:

10Na + 12HNO3 (разб)→ N2 +10NaNO3 + 6H2O

При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

8Na  +  10HNO3  =  8NaNO3  +  NH4NO3  +  3H2O

2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют

очень слабые кислотные свойства. Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртамифенолом и органическими кислотами.

Например, при взаимодействии лития с аммиаком образуются амиды и водород:

2Li + 2NH3 = 2LiNH2 + H2

 Ацетилен с натрием образует ацетиленид натрия и также водород:

Н ─ C ≡ С ─ Н + 2Na  →  Na ─ C≡C ─ Na + H2

 Фенол с натрием реагирет с образованием фенолята натрия и водорода:

2C6H5OH  +  2Na  →  2C6H5ONa   +  H2

Метанол с натрием образуют метилат натрия и водород:

2СН3ОН   +  2Na   →   2 CH3ONa   +  H2

 Уксусная кислота с литием образует ацетат лития и водород:

2СH3COOH    +   2Li     →  2CH3COOOLi    +   H2

Щелочные металлы реагируют с галогеналканами (реакция Вюрца).

Например, хлорметан с натрием образует этан и хлорид натрия:

2CH3Cl + 2Na   →  C2H6 + 2NaCl

2.6. В расплаве щелочные металлы могут вытеснять менее активные металлы из солей. Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например, натрий вытесняет алюминий из расплава хлорида алюминия :

3Na + AlCl3 → 3NaCl + Al

Оксиды щелочных металлов

Способы получения

Оксиды щелочных металлов (кроме лития) можно получить только косвенными методами: взаимодействием натрия с окислителями в расплаве:

1. Оксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:

10Na  +  2NaNO3 →  6Na2O  +  N2

2. Взаимодействием натрия с пероксидом натрия:

2Na  +  Na2O2 →  2Na2O

 3. Взаимодействием натрия с расплавом щелочи:

2Na  +  2NaOН → 2Na2O  +  Н2

4. Оксид лития можно получить разложением гидроксида лития:

2LiOН → Li2O  +  Н2O

Химические свойства

Оксиды щелочных металлов — типичные основные оксиды. Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.

1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами:

Например, оксид натрия взаимодействует с оксидом фосфора (V):

3Na2O  +  P2O5  → 2Na3PO4

Оксид лития взаимодейсвует с амфотерным оксидом алюминия:

Na2O  +  Al2O3  → 2NaAlO2

2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

Например, оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды:

K2O  +  2HCl →  2KCl  +  H2O

3. Оксиды щелочных металлов активно взаимодействуют с водой с образованием щелочей.

Например, оксид лития взаимодействует с водой с образованием гидроксида лития:

Li2O  +  H2O →  2LiOH

4. Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида.

2Na2O + O2 = 2Na2O2

Пероксиды щелочных металлов

Химические свойства

Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные, так и восстановительные свойства.

1. Пероксиды щелочных металлов взаимодействуют с водой. При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:

Na2O2   +  2H2O (хол.)  =  2NaOH  +   H2O2

При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:

2Na2O+  2H2O (гор.)  =  4NaOH  +   O2

2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами.

Например, пероксид натрия реагирует с углекислым газом с образовани-ем карбоната натрия и кислорода:

2Na2O2  +  CO2  =  2Na2CO3  + O2

3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:

Na2O2   +  2HCl   =   2NaCl  +   H2O2

При нагревании пероксиды, опять-таки, диспропорционируют:

2Na2O2    +  2H2SO4 (разб.гор.)  =  2Na2SO4  +  2H2O  +  O2

4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:

2Na2O2  =  2Na2O   +  O2

5. При взаимодействии с восстановителями пероксиды проявляют окис-лительные свойства.

Например, пероксид натрия с угарным газом реагирует с образованием карбоната натрия:

Na2O2  +  CO  =  Na2CO3

Пероксид натрия с сернистым газом также вступает в ОВР с образовани-ем сульфата натрия:

Na2O2  +  SO2  =  Na2SO4

 2Na2O2   +  S   =  Na2SO3  +  Na2O

Na2O2    +   2H2SO4   +  2NaI   =  I2  +  2Na2SO4  +   2H2O

Na2O2   +  2H2SO4   +  2FeSO4 =  Fe2(SO4)3  +  Na2SO4  +   2H2O

3Na2O2  +  2Na3[Cr(OH)6]   =  2Na2CrO4  +  8NaOH  +  2H2O

6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода.

Например, при взаимодействии с подкисленным раствором пермангана-та калия пероксид натрия образует соль и молекулярный кислород:

5Na2O2   +  8H2SO4   +  2KMnO4   =  5O2  +  2MnSO4  +  8H2O  +  5Na2SO4  +   K2SO4

 

Гидроксиды щелочных металлов (щелочи)

Способы получения

1. Щелочи получают электролизом растворов хлоридов щелочных метал-лов:

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гид-ридов и некоторых других бинарных соединений с водой также образуют-ся щелочи.

Например, натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

Na2O2 + H2O → 2NaOH + H2O2

3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи.

Например, карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия:

K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH

Химические свойства

1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например, гидроксид калия с фосфорной кислотой реагирует с образова-нием фосфатов, гидрофосфатов или дигидрофосфатов:

3KOH + H3PO4 → K3PO4 + H2O

2KOH + H3PO4 → K2HPO4 + 2H2O

KOH + H3PO4 → KH2PO4 + H2O

2. Гидроксиды щелочных металлов реагируют с кислотными оксидами. При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например, гидроксид натрия  с углекислым газом реагирует с образова-нием карбонатов или гидрокарбонатов:

2NaOH(избыток)  + CO2 → Na2CO3 + H2O

NaOH + CO2(избыток)  → NaHCO3

Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат:

2NO2  +  2NaOH  =  NaNO3 + NaNO+  H2O

А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления:

2KOH  +  2NO2  +  O2  =  2KNO3  +  H2O

3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются средние соли, а в растворе комплексные соли.

Например, гидроксид натрия  с оксидом алюминия реагирует в расплаве с образованием алюминатов:

2NaOH + Al2O3  → 2NaAlO2 + H2O

в растворе образуется комплексная соль — тетрагидроксоалюминат:

2NaOH + Al2O3 + 3H2O → 2Na[Al(OH)4]

Еще пример: гидроксид натрия с гидроксидом алюминия в расплаве образут также комплексную соль:

NaOH + Al(OH)3 → Na[Al(OH)4]

4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.

Например: гидроксид калия  реагирует с гидрокарбонатом калия с образованием карбоната калия:

KOH + KHCO3 →  K2CO3  +  H2O

5. Щелочи взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется щелочами до силиката и водорода:

2NaOH + Si + H2O → Na2SiO3 + H2

Фтор окисляет щелочи. При этом выделяется молекулярный кислород:

4NaOH + 2F2 → 4NaF + O2 (OF2)+ 2H2O

Другие галогенысера и фосфордиспропорционируют в щелочах:

3KOH +  P4 +  3H2O =  3KH2PO2  +  PH3

2KOH(холодный)  +  Cl2  = KClO  +  KCl  +  H2O

6KOH(горячий)  +  3Cl2  =  KClO3  +  5KCl  +  3H2O

Сера взаимодействует с щелочами только при нагревании:

6NaOH  +  3S  =  2Na2S   +  Na2SO3  +  3H2O

6. Щелочи взаимодействуют с амфотерными металлами, кроме железа и хрома. При этом в расплаве образуются соль и водород:

2KOH + Zn → K2ZnO2 + H2

В растворе образуются комплексная соль и водород:

2NaOH + 2Al  + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями.

С щелочами взаимодействуют соли тяжелых металлов.

Например, хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с щелочами взаимодействуют соли аммония.

Например, при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксиды всех щелочных металлов плавятся без разложения, гидроксид лития разлагается при нагревании до температуры 600°С:

2LiOH → Li2O + H2O

9. Все гидроксиды щелочных металлов проявляют свойства сильных оснований. В воде практически нацело диссоциируют, образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na+ + OH

10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу. При этом на катоде восстанавливаются сами металлы, а на аноде выделяется молекулярный кислород:

4NaOH → 4Na + O2 + 2H2O

Соли щелочных металлов 

Нитраты и нитриты щелочных металлов

Нитраты щелочных металлов при нагревании разлагаются на нитраты и кислород. Исключениенитрат лития. Он разлагается на оксид лития, оксид азота (IV)  и кислород.

Например, нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:

2NaNO3  → 2NaNO2  +  O2 

Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.

Нитриты щелочных металлов могут быть окислителями или восстановителями.

В щелочной среде нитраты и нитриты — очень мощные окислители.

Например, нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:

NaNO3  +  4Zn  +  7NaOH  +  6H2O  =  4Na2[Zn(OH)4]  +  NH3

Сильные окислители окисляют нитриты до нитратов.

Например, перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:

5NaNO2  +  2KMnO4  +  3H2SO4  =  5NaNO3  +  2MnSO4  +  K2SO4  +  3H2O 

Поделиться ссылкой:

chemege.ru

Щелочные металлы и их соединения

Щелочные металлы и их соединения.

  1. Щелочные металлы.

Щелочные металлы легко реагируют с неметаллами:

2K + I2 = 2KI

2Na + H2 = 2NaH

6Li + N2 = 2Li3N (реакция идет уже при комнатной температуре)

3K + P = K3P

2Na + S = Na2S

2Na + 2C = Na2C2

В реакциях с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – пероксид, калий – надпероксид.

4Li + O2 = 2Li2O

2Na + O2 = Na2O2

K + O2 = KO2

Получение оксида натрия:

10Na + 2NaNO3 = 6Na2O + N2

2Na + Na2O2 = 2Na2O

2Na + 2NaOН = 2Na2O + Н2

Взаимодействие с водой приводит к образованию щелочи и водорода.

2Na + 2H2O = 2NaOH + H2

Взаимодействие с кислотами:

2Na + 2HCl = 2NaCl + H2

8Na + 5H2SO4(конц.) = 4Na2SO4 + H2S + 4H2O

2Li + 3H2SO4(конц.) = 2LiHSO4 + SO2 + 2H2O

8Na + 10HNO3 = 8NaNO3 + NH4NO3 + 3H2O

При взаимодействии с аммиаком образуются амиды и водород:

2Li + 2NH3 = 2LiNH2 + H2

Взаимодействие с органическими соединениями:

Н ─ C ≡ С─ Н + 2Na → Na ─ C≡C ─ Na + H2

2CH3Cl + 2Na → C2H6 + 2NaCl

2C6H5OH + 2Na → 2C6H5ONa + H2

2СН3ОН + 2Na → 2 CH3ONa + H2

2СH3COOH + 2Na → 2CH3COOONa + H2

Качественной реакцией на щелочные металлы является окрашивание пламени их катионами. Ион Li+ окрашивает пламя в кармино-красный цвет, ион Na+ – в желтый, К+ – в фиолетовый

  1. Соединения щелочных металлов

  1. Оксиды.

Оксиды щелочных металлов типичные основные оксиды. Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.

3Na2O + P2O5 = 2Na3PO4

Na2O + Al2O3 = 2NaAlO2

Na2O + 2HCl = 2NaCl + H2O

Na2O + 2H+ = 2Na+ + H2O

Na2O + H2O = 2NaOH

  1. Пероксиды.

2Na2O2 + CO2 = 2Na2CO3 + O2

Na2O2 + CO = Na2CO3

Na2O2 + SO2 = Na2SO4

2Na2O + O2 = 2Na2O2

Na2O + NO + NO2 = 2NaNO2

2Na2O2 = 2Na2O + O2

Na2O2 + 2H2O (хол.) = 2NaOH + H2O2

2Na2O2 + 2H2O (гор.) = 4NaOH + O2

Na2O2 + 2HCl = 2NaCl + H2O2

2Na2O2 + 2H2SO4 (разб.гор.) = 2Na2SO4 + 2H2O + O2

2Na2O2 + S = Na2SO3 + Na2O

5Na2O2 + 8H2SO4 + 2KMnO4 = 5O2 + 2MnSO4 + 8H2O + 5Na2SO4 + K2SO4

Na2O2 + 2H2SO4 + 2NaI = I2 + 2Na2SO4 + 2H2O

Na2O2 + 2H2SO4 + 2FeSO4 = Fe2(SO4)3 + Na2SO4 + 2H2O

3Na2O2 + 2Na3[Cr(OH)6] = 2Na2CrO4 + 8NaOH + 2H2O

  1. Основания (щелочи).

2NaOH(избыток) + CO2 = Na2CO3 + H2O

NaOH + CO2(избыток) = NaHCO3

SO2 + 2NaOH (избыток) = Na2SO3 + H2O

SiO2 + 2NaOH Na2SiO3 + H2O

2NaOH + Al2O3 2NaAlO2 + H2O

2NaOH + Al2O3 + 3H2O = 2Na[Al(OH)4]

NaOH + Al(OH)3 = Na[Al(OH)4]

2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2

2NO2 + 2NaOH = NaNO3 + NaNO2 + H2O

P2O5 + 4NaOH = 2Na2HPO4 + H2O

2KOH + 2NO2 + O2 = 2KNO3 + H2O

KOH + KHCO3 = K2CO3 + H2O

2NaOH + Si + H2O = Na2SiO3 + H2

3KOH + P4 + 3H2O = 3KH2PO2 + PH3

2KOH(холодный) + Cl2 = KClO + KCl + H2O

6KOH(горячий) + 3Cl2 = KClO3 + 5KCl + 3H2O

6NaOH + 3S = 2Na2S + Na2SO3 + 3H2O

  1. Соли.

2NaNO3 2NaNO2 + O2

Na2CO3 + 2NH4Cl = 2NaCl + CO2 + 2NH3 + Н2О

NaHCO3 + HNO3 = NaNO3 + CO2 + H2O

5NaNO2 + 2KMnO4 + 3H2SO4 = 5NaNO3 + 2MnSO4 + K2SO4 + 3H2O

NaNO3 + 4Zn + 7NaOH + 6H2O = 4Na2[Zn(OH)4] + NH3

NaI → Na+ + I

на катоде: 2Н2О + 2e → H2 + 2OH 1

на аноде : 2I – 2e → I2 1

2О + 2I H2 + 2OH + I2

2H2O + 2NaI H2 + 2NaOH + I2

8KI + 5H2SO4(конц.) = 4K2SO4 + H2S + 4I2 + 4H2O

2NaCl 2Na + Cl2

на катоде на аноде

Na2SO4 + Ba(OH)2 = BaSO4↓ + 2NaOH

2Na2HPO4 Na4P2O7 + H2O

KNO3 + 4Mg + 6H2O = NH3 + 4Mg(OH)2 + KOH

4KClO3 KCl + 3KClO4

2KClO3 2KCl + 3O2

KClO3 + 6HCl = KCl + 3Cl2↑ + 3H2O

Na2SO3 + S = Na2S2O3

Na2S2O3 + H2SO4 = Na2SO4 + S↓ + SO2↑ + H2O

2NaI + Br2 = 2NaBr + I2

2NaBr + Cl2 = 2NaCl + Br2

I A группа.

1. Над поверхностью налитого в колбу раствора едкого натра пропускали электрические разряды, при этом воздух в колбе окрашивался в бурый цвет, который исчезает через некоторое время. Полученный раствор осторожно выпарили и установили, что твердый остаток представляет собой смесь двух солей. При нагревании этой смеси выделяется газ и остается единственное вещество. Напишите уравнения описанных реакций.

2. Вещество, выделяющееся на катоде при электролизе расплава хлорида натрия, сожгли в кислороде. Полученный продукт поместили в газометр, наполненный углекислым газом. Образовавшееся вещество добавили в раствор хлорида аммония и раствор нагрели. Напишите уравнения описанных реакций.

3) Азотную кислоту нейтрализовали пищевой содой, нейтральный раствор осторожно выпарили и остаток прокалили. Образовавшееся вещество внесли в подкисленный серной кислотой раствор перманганата калия, при этом раствор обесцветился. Азотсодержащий продукт реакции поместили в раствор едкого натра и добавили цинковую пыль, при этом выделился газ с резким запахом. Напишите уравнения описанных реакций.

4) Вещество, полученное на аноде при электролизе раствора иодида натрия с инертными электродами, внесли в реакцию с калием. Продукт реакции нагрели с концентрированной серной кислотой, и выделившийся газ пропустили через горячий раствор хромата калия. Напишите уравнения описанных реакций

5) Вещество, полученное на катоде при электролизе расплава хлорида натрия, сожгли в кислороде. Поученный продукт последовательно обработали сернистым газом и раствором гидроксида бария. Напишите уравнения описанных реакций

6) Белый фосфор растворяется в растворе едкого кали с выделением газа с чесночным запахом, который самовоспламеняется на воздухе. Твердый продукт реакции горения прореагировал с едким натром в таком соотношении, что в образовавшемся веществе белого цвета содержится один атом водорода; при прокаливании последнего вещества образуется пирофосфат натрия. Напишите уравнения описанных реакций

7) Неизвестный металл сожгли в кислороде. Продукт реакции, взаимодействует с углекислым газом, образует два вещества: твердое, которое взаимодействует с раствором соляной кислоты с выделением углекислого газа, и газообразное простое вещество, поддерживающее горение. Напишите уравнения описанных реакций.

8) Через избыток раствора едкого кали пропустили бурый газ в присутствии большого избытка воздуха. В образовавшийся раствор добавили магниевую стружку и нагрели, выделившимся газом нейтрализовали азотную кислоту. Полученный раствор осторожно выпарили, твердый продукт реакции прокалили. Напишите уравнения описанных реакций.

9) При термическом разложении соли А в присутствии диоксида марганца образовались бинарная соль Б и газ, поддерживающий горение и входящий в состав воздуха; при нагревании этой соли без катализатора образуются соль Б и соль высшей кислородсодержащей кислоты. При взаимодействии соли А с соляной кислотой выделяется желто-зеленый газ (простое вещество) и образуется соль Б. Соль Б окрашивает пламя в фиолетовый цвет, при ее взаимодействии с раствором нитрата серебра выпадает осадок белого цвета. Напишите уравнения описанных реакций.

10) К нагретой концентрированной серной кислотой добавили медную стружку и выделившийся газ пропустили через раствор едкого натра (избыток). Продукт реакции выделили, растворили в воде и нагрели с серой, которая в результате проведения реакции растворилась. В полученный раствор добавили разбавленную серную кислоту. Напишите уравнения описанных реакций.

11) Поваренную соль обработали концентрированной серной кислотой. Полученную соль обработали гидроксидом натрия. Полученный продукт прокалили с избытком угля. Выделившийся при этом газ прореагировал в присутствии катализатора с хлором. Напишите уравнения описанных реакций.

12) Натрий прореагировал с водородом. Продукт реакции растворили в воде, при этом образовался газ, реагирующий с хлором, а полученный раствор при нагревании прореагировал с хлором с образованием смеси двух солей. Напишите уравнения описанных реакций.

13) Натрий сожгли в избытке кислорода, полученное кристаллическое вещество поместили в стеклянную трубку и пропустили через неё углекислый газ. Газ, выходящий из трубки, собрали и сожгли в его атмосфере фосфор. Полученное вещество нейтрализовали избытком раствора гидроксида натрия. Напишите уравнения описанных реакций.

14) К раствору, полученному в результате взаимодействия пероксида натрия с водой при нагревании, добавили раствор соляной кислоты до окончания реакции. Раствор образовавшейся соли подвергли электролизу с инертными электродами. Газ, образовавшийся в результате электролиза на аноде, пропустили через суспензию гидроксида кальция. Напишите уравнения описанных реакций.

15) Через раствор гидроксида натрия пропустили сернистый газ до образования средней соли. К полученному раствору прилили водный раствор перманганата калия. Образовавшийся осадок отделили и подействовали на него соляной кислотой. Выделившийся газ пропустили через холодный раствор гидроксида калия. Напишите уравнения описанных реакций.

16) Смесь оксида кремния (IV) и металлического магния прокалили. Полученное в результате реакции простое вещество обработали концентрированным раствором гидроксида натрия. Выделившийся газ пропустили над нагретым натрием. Образовавшееся вещество поместили в воду. Напишите уравнения описанных реакций.

17) Продукт взаимодействия лития с азотом обработали водой. Полученный газ пропустили через раствор серной кислоты до прекращения химических реакций. Полученный раствор обработали раствором хлорида бария. Раствор профильтровали, а фильтрат смешали с раствором нитрата натрия и нагрели. Напишите уравнения описанных реакций.

18) Натрий нагрели в атмосфере водорода. При добавлении к полученному веществу воды наблюдали выделение газа и образование прозрачного раствора. Через этот раствор пропустили бурый газ, который был получен в результате взаимодействия меди с концентрированным раствором азотной кислоты. Напишите уравнения описанных реакций.

19) Гидрокарбонат натрия прокалили. Полученную соль растворили в воде и смешали с раствором алюминия, в результате образовался осадок и выделился бесцветный газ. Осадок обработали избытком раствора азотной кислоты, а газ пропустили через раствор силиката калия. Напишите уравнения описанных реакций.

20) Натрий сплавили с серой. Образовавшееся соединение обработали соляной кислотой, выделившийся газ нацело прореагировал с оксидом серы (IV). Образовавшееся вещество обработали концентрированной азотной кислотой. Напишите уравнения описанных реакций.

21) Натрий сожгли в избытке кислорода. Образовавшееся вещество обработали водой. Полученную смесь прокипятили, после чего в горячий раствор добавили хлор. Напишите уравнения описанных реакций.

22) Калий нагрели в атмосфере азота. Полученное вещество обработали избытком соляной кислоты, после чего к образовавшейся смеси солей добавили суспензию гидроксида кальция и нагрели. Полученный газ пропустили рад раскаленным оксидом меди (II).Напишите уравнения описанных реакций.

23) Калий сожгли в атмосфере хлора, образовавшуюся соль обработали избытком водного раствора нитрата серебра. Выпавший осадок отфильтровали, фильтрат выпарили т осторожно нагрели. Образовавшуюся соль обработали водным раствором брома. Напишите уравнения описанных реакций.

24) Литий прореагировал с водородом. Продукт реакции растворили в воде, при этом образовался газ, реагирующий с бромом, а полученный раствор при нагревании прореагировал с хлором с образованием смеси двух солей. Напишите уравнения описанных реакций.

25) Натрий сожгли на воздухе. Образовавшееся при этом твердое вещество поглощает углекислый газ с выделением кислорода и соли. Последнюю соль растворили в соляной кислоте, а к полученному при этом раствору добавили раствор нитрата серебра. При этом выпал белый осадок. Напишите уравнения описанных реакций.

26) Кислород подвергли воздействию электроразряда в озонаторе. Полученный газ пропустили через водный раствор йодида калия, при этом выделился новый газ без цвета и запаха, поддерживающий горение и дыхание. В атмосфере последнего газа сожгли натрий, а полученное при этом твердое вещество прореагировало с углекислым газом. Напишите уравнения описанных реакций.

I A группа.

1. N2 + O22NO

2NO + O2 = 2NO2

2NO2 + 2NaOH = NaNO3 + NaNO2 + H2O

2NaNO3 2NaNO2 + O2

2. 2NaCl 2Na + Cl2

на катоде на аноде

2Na + O2 = Na2O2

2Na2O2 + 2CO2 = 2Na2CO3 + O2

Na2CO3 + 2NH4Cl = 2NaCl + CO2 + 2NH3 + Н2О

3. NaHCO3 + HNO3 = NaNO3 + CO2 + H2O

2NaNO3 2NaNO2 + O2

5NaNO2 + 2KMnO4 + 3H2SO4 = 5NaNO3 + 2MnSO4 + K2SO4 + 3H2O

NaNO3 + 4Zn + 7NaOH + 6H2O = 4Na2[Zn(OH)4] + NH3

4. 2H2O + 2NaI H2 + 2NaOH + I2

2K + I2 = 2KI

8KI + 5H2SO4(конц.) = 4K2SO4 + H2S + 4I2 + 4H2O

3H2S + 2K2CrO4 + 2H2O = 2Cr(OH)3↓ + 3S↓ + 4KOH

5. 2NaCl 2Na + Cl2

на катоде на аноде

2Na + O2 = Na2O2

Na2O2 + SO2 = Na2SO4

Na2SO4 + Ba(OH)2 = BaSO4↓ + 2NaOH

6. P4 + 3KOH + 3H2O = 3KH2PO2 + PH3

2PH3 + 4O2 = P2O5 + 3H2O

P2O5 + 4NaOH = 2Na2HPO4 + H2O

2Na2HPO4 Na4P2O7 + H2O

7. 2Na + O2 Na2O2

2Na2O2 + 2CO2 = 2Na2CO3 + O2

Na2CO3 + 2HCl = 2NaCl + CO2 + H2O

C + O2 = CO2

8. 2KOH + 2NO2 + O2 = 2KNO3 + H2O

KNO3 + 4Mg + 6H2O = NH3 + 4Mg(OH)2 + KOH

NH3 + HNO3 = NH4NO3

NH4NO3N2O + 2H2O (190 – 245°C)

2NH4NO32NO + N2 + 4H2O (250 – 300°C)

2NH4NO32N2 + О2 + 4H2O (выше 300°C)

9. 2KClO3 2KCl + 3O2

4KClO3 KCl + 3KClO4

KClO3 + 6HCl = KCl + 3Cl2↑ + 3H2O

KCl + AgNO3 = AgCl↓ + KNO3

10. 2H2SO4(конц.) + Cu = CuSO4 + SO2 ↑ + 2H2O

SO2 + 2NaOH = Na2SO3 + H2O

Na2SO3 + S = Na2S2O3

Na2S2O3 + H2SO4 = Na2SO4 + S↓ + SO2↑ + H2O

11. NaCl(тверд.) + H2SO4(конц.) = NaHSO4 + HCl↑

NaHSO4 + NaOH = Na2SO4 + H2O

Na2SO4 + 4C Na2S + 4CO↑

CO + Cl2 COCl2

12) 2Na + H2 = 2NaH

NaH + H2O = NaOH + H2

H2 + Cl2 = 2HCl

6NaOH + 3Cl2 = NaClO3 + 5NaCl + 3H2O

13) 2Na + O2 = Na2O2

2Na2O2 + 2CO2 = 2Na2CO3 + O2

4P + 5O2 = 2P2O5

P2O5 + 6NaOH = 2Na3PO4 + 3H2O

14) 2Na2O2 + 2H2O = 4NaOH + O2

NaOH + HCl = NaCl + H2O

2H2O + 2NaCl H2↑ + 2NaOH + Cl2

2Cl2 + 2Ca(OH)2 = CaCl2 + Ca(ClO)2 + 2H2O

15) 2NaOH + SO2 = Na2SO3 + H2O

3Na2SO3 + 2KMnO4 + H2O = 3Na2SO4 + 2MnO2 + 2KOH

MnO2 + 4HCl = MnCl2 + Cl2 + 2H2O

2NaOH(холодный) + Cl2 = NaCl + NaClO + H2O

16) SiO2 + 2Mg = 2MgO + Si

2NaOH + Si + H2O = Na2SiO3 + 2H2

2Na + H2 = 2NaH

NaH + H2O = NaOH + H2

17) 6Li + N2 = 2Li3N

Li3N + 3H2O = 3LiOH + NH3

2NH3 + H2SO4 = (NH4)2SO4

(NH4)2SO4 + BaCl2 = BaSO4 + 2NH4Cl

18) 2Na + H2 = 2NaH

NaH + H2O = NaOH + H2

Cu + 4HNO3(конц.) = Cu(NO3)2 + 2NO2 + 2H2O

2NaOH + 2NO2 = NaNO3 + NaNO2 + H2O

19) 2NaHCO3 Na2CO3 + CO2 + H2O

3Na2CO3 + 2AlBr3 + 3H2O = 2Al(OH)3 + 3CO2↑ + 6NaBr

Al(OH)3 + 3HNO3 = Al(NO3)3 + 3H2O

К2SiO3 + 2CO2 + 2H2O = 2КHCO3 + H2SiO3

20) 2Na + S = Na2S

Na2S + 2HCl = 2NaCl + H2S↑

SO2 + 2H2S = 3S + 2H2O

S + 6HNO3 = H2SO4 + 6NO2 + 2H2O

21) 2Na + O2 = Na2O2

Na2O2 + 2H2O = 2NaOH + H2O2

2H2O2 2H2O + O2

6NaOH (гор.) + 3Cl2 = NaClO3 + 5NaCl + 3H2O

22) 6K + N2 = 2K3N

K3N + 4HCl = 3KCl + NH4Cl

2NH4Cl + Ca(OH)2 = CaCl2 + 2NH3 + 2H2O

2NH3 + 3CuO = N2 + 3Cu + 3H2O

23) 2K + Cl2 = 2KCl

KCl + AgNO3 = KNO3 + AgCl↓

2KNO3 2KNO2 + O2

KNO2 + Br2 + H2O = KNO3 + 2HBr

24) 2Li + H2 = 2LiH

LiH + H2O = LiOH + H2

H2 + Br2 = 2HBr

6LiOH(гор.) + 3Cl2 = LiClO3 + 5LiCl + 3H2O

25) 2Na + O2 = Na2O2

2Na2O2 + 2CO2 = 2Na2CO3 + O2

Na2CO3 + 2HCl = 2NaCl + CO2↑ + H2O

NaCl + AgNO3 = AgCl↓ + NaNO3

26) 3O2 ↔ 2O3

O3 + 2KI + H2O = I2 + O2↑ + 2KOH

2Na + O2 = Na2O2

2Na2O2 + 2CO2 = 2Na2CO3 + O2

studfiles.net

общая характеристика, строение; свойства и получение простых веществ — урок. Химия, 8–9 класс.

Щелочными металлами называются химические элементы-металлы \(IA\) группы Периодической системы Д. И. Менделеева: литий \(Li\), натрий \(Na\), калий \(K\), рубидий \(Rb\), цезий \(Cs\) и франций \(Fr\).

 

Электронное строение атомов. На внешнем энергетическом уровне атомы щелочных металлов имеют один электрон ns1. Поэтому для всех металлов группы \(IA\) характерна степень окисления \(+1\).

Этим объясняется сходство свойств всех щелочных металлов.

Для них (сверху вниз по группе) характерно:

  • увеличение радиуса атомов;
  • уменьшение электроотрицательности;
  • усиление восстановительных, металлических свойств.

Нахождение в природе. Из щелочных металлов наиболее широко распространены в природе натрий и калий. Но из-за высокой химической активности они встречаются только в виде соединений.

Основными источниками натрия и калия являются:

  • каменная соль (хлорид натрия \(NaCl\)),
  • глауберова соль, или мирабилит — декагидрат сульфата натрия Na2SO4 \(·\) 10h3O,
  • сильвин — хлорид калия \(KCl\),
  • сильвинит — двойной хлорид калия-натрия \(KCL\) \(·\)\(NaCl\) и др.

Соединения лития, рубидия и цезия в природе встречаются значительно реже, поэтому их относят к числу редких и рассеянных.


Физические свойства простых веществ. В твёрдом агрегатном состоянии атомы связаны металлической связью. Наличие металлической связи обусловливает общие физические свойства простых веществ-металлов: металлический блеск, ковкость, пластичность, высокую тепло- и электропроводность.

 

В свободном виде простые вещества, образованные элементами \(IA\) группы — это легкоплавкие металлы серебристо-белого (литий, натрий, калий, рубидий) или золотисто-жёлтого (цезий) цвета, обладающие высокой мягкостью и пластичностью.

 

 

Наиболее твёрдым является литий, остальные щелочные металлы легко режутся ножом и могут быть раскатаны в фольгу.

 

Только у натрия плотность немного больше единицы ρ=1,01 г/см3, у всех остальных металлов плотность меньше единицы.

 

Химические свойства. Щелочные металлы обладают высокой химической активностью, реагируя с кислородом и другими неметаллами. 

Поэтому хранят щелочные металлы под слоем керосина или в запаянных ампулах. Они являются сильными восстановителями.

 

Все щелочные металлы активно реагируют с водой, выделяя из неё водород.

Пример:

2Na+2h3O=2NaOH+h3↑.

 

Взаимодействие натрия с водой протекает с выделением большого количества теплоты (т. е. реакция является экзотермической). Кусочек натрия, попав в воду, начинает быстро двигаться по её поверхности. Под действием выделяющейся теплоты он расплавляется, превращаясь в каплю, которая, взаимодействуя с водой, быстро уменьшается в размерах. Если задержать её, прижав стеклянной палочкой к стенке сосуда, капля воспламенится и сгорит ярко-жёлтым пламенем.

Получение. Металлический натрий в промышленности получают главным образом электролизом расплава хлорида натрия с инертными (графитовыми) электродами.

В расплаве хлорида натрия присутствуют ионы:


 NaCl⇄Na++Cl−.

 

При электролизе

на катоде восстанавливаются катионы Na+, а на аноде окисляются анионы Cl−:

 

катод (\(–\)):  2Na++2e=2Na,

 

анод (\(+\)): 2Cl−−2e=Cl2↑.

Суммарное уравнение реакции при электролизе расплава хлорида натрия:

 

2NaCl→2Na+Cl2↑.

Источники:

Иллюстрация: https://arhivurokov.ru/multiurok/html/2017/02/26/s_58b332582fb94/img1.jpg

www.yaklass.ru

Щелочные металлы в химии

К щелочным металлам относятся металлы IA группы Периодической системы Д.И. Менделеева – литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs) и франций (Fr). На внешнем энергетическом уровне щелочных металлов находится один валентный электрон. Электронная конфигурация внешнего энергетического уровня щелочных металлов – ns1. В своих соединениях они проявляют единственную степень окисления равную +1. В ОВР являются восстановителями, т.е. отдают электрон.

Физические свойства щелочных металлов

Все щелочные металлы легкие (обладают небольшой плотностью), очень мягкие (за исключением Li легко режутся ножом и могут быть раскатаны в фольгу), имеют низкие температуры кипения и плавления (с ростом заряда ядра атома щелочного металла происходит понижение температуры плавления).

В свободном состоянии Li, Na, K и Rb – серебристо-белые металлы, Cs – металл золотисто-желтого цвета.

Щелочные металлы хранят в запаянных ампулах под слоем керосина или вазелинового масла, поскольку они обладают высокой химической активностью.

Щелочные металлы обладают высокой тепло- и электропроводностью, что обусловлено наличием металлической связи и объемоцентрированной кристаллической решетки

Получение щелочных металлов

Все щелочные металлы возможно получить электролизом расплава их солей, однако на практике таким способом получают только Li и Na, что связано с высокой химической активностью K, Rb, Cs:

2LiCl = 2Li + Cl2

2NaCl = 2Na + Cl2

Любой щелочной металл можно получить восстановлением соответствующего галогенида (хлорида или бромида), применяя в качестве восстановителей Ca, Mg или Si. Реакции проводят при нагревании (600 – 900С) и под вакуумом. Уравнение получения щелочных металлов таким способом в общем виде:

2MeCl + Ca = 2Mе↑ + CaCl2,

где Ме – металл.

Известен способ получения лития из его оксида. Реакцию проводят при нагревании до 300°С и под вакуумом:

2Li2O + Si + 2CaO = 4Li + Ca2SiO4

Получение калия возможно по реакции между расплавленным гидроксидом калия и жидким натрием. Реакцию проводят при нагревании до 440°С:

KOH + Na = K + NaOH

Химические свойства щелочных металлов

Все щелочные металлы активно взаимодействуют с водой образуя гидроксиды. Из-за высокой химической активности щелочных металлов протекание реакции взаимодействия с водой может сопровождаться взрывом. Наиболее спокойно с водой реагирует литий. Уравнение реакции в общем виде:

2Me + H2O = 2MeOH + H2

где Ме – металл.

Щелочные металлы взаимодействуют с кислородом воздуха образую ряд различных соединений – оксиды (Li), пероксиды (Na), надпероксиды (K, Rb, Cs):

4Li + O2 = 2Li2O

2Na + O2 =Na2O2

K + O2 = KO2

Все щелочные металлы при нагревании реагируют с неметаллами (галогенами, азотом, серой, фосфором, водородом и др.). Например:

2Na + Cl2 =2NaCl

6Li + N2 = 2Li3N

2Li +2C = Li2C2

2K + S = K2S

2Na + H2 = 2NaH

Щелочные металлы способны взаимодействовать со сложными веществами (растворы кислот, аммиак, соли). Так, при взаимодействии щелочных металлов с аммиаком происходит образование амидов:

2Li + 2NH3 = 2LiNH2 + H2

Взаимодействие щелочных металлов с солями происходит по следующему принципу –вытесняют менее активные металлы (см. ряд активности металлов) из их солей:

3Na + AlCl3 = 3NaCl + Al

Взаимодействие щелочных металлов с кислотами неоднозначно, поскольку при протекании таких реакций металл первоначально будет реагировать с водой раствора кислоты, а образующаяся в результате этого взаимодействия щелочь будет реагировать с кислотой.

Щелочные металлы реагируют с органическими веществами, такими, как спирты, фенолы, карбоновые кислоты:

2Na + 2C2H5OH = 2C2H5ONa + H2

2K + 2C6H5OH = 2C6H5OK + H2

2Na + 2CH3COOH = 2CH3COONa + H2

Качественные реакции

Качественной реакцией на щелочные металлы является окрашивание пламени их катионами: Li+ окрашивает пламя в красный цвет, Na+ — в желтый, а K+, Rb+, Cs+ — в фиолетовый.

Примеры решения задач

ru.solverbook.com

Соединения щелочных металлов

Оксиды — белые кристаллические вещества, энергично растворяющиеся в воде с образованием щелочей:

Na2O + H2O = 2NaOH

Реагируют с кислотными и амфотерными оксидами с образованием солей. Получают оксид лития прямым синтезом, оксиды других металлов восстановлением пероксида:

Na2O2 + 2Na = 2Na2O

Пероксиды щелочных металлов термически неустойчивы, при нагревании разлагаются:

t

2Na2O2 = 2Na2O + O2

Реагируют с водой и диоксидом углерода:

Na2O2 + 2H2O = 2NaOH + H2O2; 2Na2O2 + 2CO2 = 2Na2CO3 + O2

Последняя реакция используется для регенерации воздуха.

Надпероксиды образуются в результате прямого синтеза только для металлов подгруппы калия. Представляют собой кристаллические вещества желтого цвета, очень реакционноспособны:

2КO2 + 2H2O = 2КOH + Н2O2 + O2;

Озониды — красные кристаллические вещества, получают пропуская озон через расплав гидроксида:

4КOН + 4O3 = 4KO3 + O2 + 2Н2O

Озониды неустойчивы, бурно разлагаются водой:

2KO3 = 2KO2 + O2 ; 4KO3 + 2Н2O = 4КOН + 5O2

Гидроксиды щелочных металлов получают взаимодействием их оксидов с водой, электролизом водных растворов хлоридов или взаимодействием карбонатов с известковым молоком (суспензией гидроксида кальция в воде):

эл.ток

2NaCl + 2H2O = 2NaOH + H2 + Cl2; Na2CO3 + Ca(OH)2 = CaCO3 + 2NaOH

Гидроксиды хорошо растворимы в воде, сильные основания, термически устойчивы, возгоняются без разложения. Исключение составляет гидроксид лития:

t

2LiOH = Li2O + H2O

Гидроксид лития используется как электролит для щелочных аккумуляторов. Некоторые соли лития используют в медицине для растворения мочевой кислоты при подагре и как психотропные препараты. Гидроксид натрия используюь при производстве целлюлозы, мыла, очистке растительного масла и нефти. Гидроксид калия применяется при производстве жидкого мыла, очистке и осушке газов и растворителей.

Щелочные металлы образуют соли со всеми известными кислотами. Соли щелочных металлов, за исключением солей лития, обычно хорошо растворимы в воде. Малорастворимыми солями лития являются: фосфат, карбонат, фторид. Малорастворимы в воде Na[Sb(OH)6], KClO4, K2[PtCl6], K3[Co(NO2)6], RbClO4, CsClO4. Соли щелочных металлов окрашивают пламя в характерные цвета: литий — в карминово-красный, натрий — в желтый, калий — в фиолетовый.

Соли щелочных металлов термически устойчивы, исключение составляют соли лития, которые разлагаются при нагревании аналогично солям магния. Например:

Li2СО3 = Li2O + СО2; 4LiNO3 = 2Li2O + 4NO2 + O2

Хлорид натрия широко используется как консервант и вкусовая добавка. Нитрат натрия (натриевая селитра) — азотное удобрение. Хлорид, нитрат, карбонат и сульфат калия используют в качестве калийных удобрений. Соли рубидия — снотворные и болеутоляющие препараты, применяются при лечении некоторых форм эпилепсии.

В организме животных и человека катионы натрия и калия играют важную роль (натрий-калиевый насос). В организме животных катионы калия обеспечивают проводимость нервного импульса, регулируют работу ферментов. Катионы калия активируют в растениях синтез органических веществ, особенно углеводов, и обеспечивают тургор тканей.

Гидриды получают нагреванием щелочного металла в атмосфере водорода:

t

2Na + H2 = 2NaH

Представляют собой бесцветные, солеподобные вещества, легко разлагаются водой, эффективные восстановители.

NaH + H2О = NaОH + H2

studfiles.net

Тема 13. Соединения щелочных металлов.

Часть I

1. Оксиды – M2O.

1) Тип связи – ионная.
Схема ее образования:


Тип кристаллической решетки:  ионная.

2)    Характер оксидов – основный.

Химические свойства оксидов:

а) M2 O + кислотный оксид→соль
б) M2 O + h3O → щелочь
в) M2 O + HNO3→ соль MNO3 + h3O

3) Получение:
а) 4LI + O2→2Li2O;
б) Na→X→Na2O.

Запишите уравнения соответствующих реакций.
2Na + O2→Na2O2
Na2O2 + 2Na→2Na2O

2. Гидроксиды МОН.

1) Тип кристаллической решетки – ионный. Состоят из катионов М+ и анионов ОН-. Физические свойства:  твердые белые вещества, гигроскопичны.
Растворы – это щелочи.
2) Химические свойства (составьте уравнения возможных реакций – молекулярные, полные и сокращенные ионные):
а) пример реакции нейтрализации:


б) Взаимодействуют с кислотными оксидами.


в) Взаимодействуют с солями, если образуется осадок:


г) взаимодействует с солями, если образуется газ:


д) Взаимодействуют с амфотерными оксидами:


е) Взаимодействует с амфотерными гидроксидами.


3) Получение:
a) 2M + 2HOH→2MOH + h3
б) M2O + HOH→2MOH

4) Заполните таблицу «Щелочи и их применение».

3. Соли имеют ионную кристаллическую решетку.
Заполните таблицу «Названия и применение солей металлов  IA группы».

4. Заполните таблицу «Окрашивание пламени ионами щелочных металлов».

Часть II

1. Заполните таблицу «Биологическая роль катионов натрия и калия».

2. Дополните цепочку переходов. Запишите уравнения реакций, с помощью которых можно осуществить превращения по схеме:

3. Заполните схему «Области применения хлорида натрия».

4. Для соединения  NaH укажите:
1) Название гидрид натрия
2) Тип связи и кристаллическую решетку — ионная связь, ионная кристаллическая решетка
3) Схему образования связи на основе реакции получения (синтеза) 2Na + h3→ 2NaН.
4) Уравнение реакции взаимодействия с водой (рассмотрите ОВР)

5.  Пероксид натрия Na2O2 имеет структурную формулу:
Na – O – O – Na.
Укажите тип связи между атомами:
а) натрия и кислорода ионная
б) кислорода и кислорода ковалентная неполярная
Наличие разных типов связи в одном соединении говорит о единой природе химической связи.

6.  По образцу сочинения, приведённого в заданиях учебного параграфа, напишите сочинение на тему «Художественный образ соединения щелочного металла» в особой тетради.


superhimik.ru

Щелочные металлы и их соединения. Химия, 8–9 класс: уроки, тесты, задания.

1. Щелочные металлы

Сложность: лёгкое

1
2. Щёлочи

Сложность: лёгкое

2
3. Общая характеристика щелочных металлов

Сложность: среднее

2
4. Химические свойства щелочных металлов и их оксидов

Сложность: среднее

4
5. Химические свойства щелочей

Сложность: среднее

4
6. Соли натрия

Сложность: среднее

3
7. Соли калия

Сложность: среднее

3
8. Общая характеристика щелочных металлов

Сложность: среднее

4
9. Электролиз расплавов солей натрия и калия

Сложность: среднее

6
10. Химические свойства щелочных металлов и их соединений

Сложность: среднее

6

www.yaklass.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *