Прочность на изгиб дерева – Сам предмет прочности или механических свойств древесины является гораздо более сложным, нежели видится на поверхности влажность древесины, деревина, древесина

Механические свойства древесины

Древесина вследствие волокнистого строения отличается высокой прочностью при растяжении и сжатии вдоль волокон и значительно меньшей — поперек волокон. У хвойных пород предел прочности при сжатии вдоль волокон в 10-12 раз больше, чем поперек, а у лиственных — в 5-8 раз. Механическая прочность древесины в значительной степени зависит от объемной массы; с увеличением объемной массы древесины повышается прочность.

Прочность зависит от влажности — с повышением влажности она уменьшается. На прочность древесины оказывает влияние лишь изменение количества гигроскопической влаги. При повышении влажности выше точки насыщения волокон прочность древесины практически не уменьшается.

Прочность древесины характеризуется пределом прочности, т.е. напряжением, равным отношению наибольшей нагрузки, предшествовавшей разрушению образца, к первоначальной площади его сечения. Деформация древесины может быть различной не только в зависимости от величины действующих сил, но и от продолжительности их воздействия. Так, при кратковременном воздействии определенной силы деформация может быть упругой, а при длительном воздействии той же силы — остаточной и тем большей, чем длительнее воздействие.

Во многих деревянных конструкциях древесина работает на сжатие, смятие, скалывание, изгиб и реже на растяжение как вдоль, так и поперек волокон. В связи с этим древесину испытывают, главным образом, на сжатие вдоль и поперек волокон, на скалывание и изгиб.

Прочность древесины при сжатии вдоль волокон. Это одно из важных механических свойств древесины. Сопротивление сжатию вдоль волокон составляет значительную величину и колеблется у различных пород от 40 до 60 МПа при стандартной влажности 12% и от 20 до 40 МПа при влажности выше 30%. Сжатие древесины вдоль волокон имеет важное значение при использовании ее для мебели, свай, стоек, стропильных ферм и т. д.

Предел прочности о 12, Па, вычисляют по формуле Оц * Pab. Здесь Р — максимальное разрушающее усилие, Н; а и b — ширина и толщина образца, м.

Прочность древесины при сжатии поперек волокон. При сжатии древесины поперек волокон в зависимости от породы и направления сжатия (радиального, тангентального) деформация может быть равномерной — однофазной и неравномерной — трехфазной. В последнем случае при испытании вначале наблюдается повышение напряжений и деформации (фаза), затем прирост напряжений почти прекращается и наблюдается только увеличение деформации образца (фаза), далее напряжения начинают возрастать (фаза). Вследствие наличия пофазной деформации испытания на сжатие поперек волокон ведут с регистрацией как усилий, так и величин деформации. За условный предел прочности при сжатии поперек волокон принимают напряжение, соответствующее пределу пропорциональности, т.е. максимальное значение напряжения на прямолинейном участке диаграммы. Условный предел в 6-10 раз меньше чем при сжатии вдоль волокон.

Прочность при растяжении вдоль волокон. При растяжении древесины вдоль волокон показатель прочности имеет наибольшие значения. Деформация древесины при растяжении (удлинение образца) незначительна. Разрушение происходит в виде разрыва тканей. При высокой прочности разрыв длинноволокнистый, а при низкой — раковистый, почти гладкий. Прочность древесины на растяжение вдоль волокон зависит от породы древесины и находится в пределах 70-170 МПа при

влажности 12%. Увеличение влажности приводит к некоторому снижению прочности. Предел прочности определяют по формуле а = Pmax/bh. Здесь b и h — ширина и толщина рабочей части образца, см; Ртах — максимальная нагрузка, предшествующая разрушению образца; Н.

Прочность при растяжении поперек волокон. Древесина сравнительно слабо сопротивляется растяжению поперек волокон. Величина предела прочности при растяжении вдоль волоконца если есть трещины, это значение вообще может упасть до нуля. Поэтому на практике древесину не применяют для работы на растяжение поперек волокон. Определение величины прочности древесины на растяжение поперек волокон необходимо для разработки безопасных в отношении растрескивания режимов сушки и для обоснования режимов резания.

Прочность древесины при статическом изгибе. При изгибе древесины возникают напряжения растяжения на выпуклой стороне и напряжения сжатия на вогнутой. Кроме того, возникают касательные напряжения при скалывании вдоль волокон. Сопротивление древесины статическому изгибу имеет большое значение во многих конструкциях, изготовляемых из нее, — мебели, лыжах, балках, стропилах, мостах. Предел прочности древесины при статическом изгибе в зависимости от породы колеблется в пределах 70-150 МПа (при влажности 12%). Увеличение влажности приводит к снижению предела прочности до 40-90 МПа (при влажности 30% и выше). Предел прочности при нагружении образца в центре о

12 = ЗР ax/2bh2. Здесь  — расстояние между центрами опор, см; b — ширина образца, см; h — высота образца (в направлении действия силы), см .

Прочность древесины при сдвиге. При сдвиге на древесину действуют две равные и противоположные по направлению силы. Многие конструкции узлов мебели, мостов, ферм работают на сдвиг. При сдвиге действуют касательные силы, расположенные в плоскости, параллельной действию внешних сил.

Испытание на сдвиг возможно в трех направлениях: скалывание вдоль волокон, скалывание поперек волокон, перерезание древесины поперек волокон. Каждый вид испытания молено проводить в радиальном и тангентальном направлениях. Всего возможны шесть случаев испытания на сдвиг. Наиболее

распространенное испытание — на скалывание вдоль волокон. Предел прочности при скалывании вдоль волокон для хвойных пород древесины почти не зависит от радиального или танген-тального направления и составляет 6,5-10 МПа. У лиственных пород при радиальном скалывании предел прочности в зависимости от породы находится в пределах 6-16 МПа, при танген-тальном на 10-30% выше, чем при радиальном. Прочность древесины при других случаях сдвига мало изучена. Предел прочности при сдвиге определяют по формуле х = Р/Ы. Здесь b — ширина площади скалывания, см;  — длина площади скалывания, см.

Ударная вязкость древесины. При статическом изгибе на древесину действует определенная нагрузка, величина которой либо остается постоянной либо возрастает постепенно. Однако в отдельных случаях изгибающая нагрузка может действовать и более резко: при прыжке на лыжах с трамплина, большой нагрузке на мост или стул, ударе судна о причал. Здесь важно знать о поведении и прочности древесины. Нагрузка при ударном изгибе производится на специальной испытательной машине — маятниковом копре.

Определяют ударную вязкость древесины А, Дж/см2, по формуле А12 = Q/nh. Здесь Q — работа, затраченная над илом (по шкале копра), Дж; b — ширина образца, см; h — высота образца, см.

Твердость древесины. С твердостью древесины приходится сталкиваться при изучении ее стойкости на истирание (деревянные полы, паркет, деревянные настилы), при обработке режущим инструментом, скреплении гвоздями (тара строительные блоки). Твердость может быть различной на торцовой, радиальной и тангнентальной поверхностях. Наиболее твердая — торцовая поверхность (22-97 МПа в зависимости от породы при влажности 12%). Твердость радиальной и тангентальной поверхностей почти одинаковы между собой, а по отношению к торцовой ниже на 30-40%. При увеличении влажности твердость уменьшается.

Модули упругости. Способность материала деформироваться, т.е. его жесткость, характеризуется модулем упругости, который представляет собой отношение напряжения в материале к упругой деформации. При растяжении и сжатии модуль упругости Е, МПа, определяют по формуле Е = ст/е (модуль  рода). Здесь о — нормальное напряжение, МПа, е — относительная деформация (величина безразмерная).

При действии сдвигающих сил модуль сдвига определяют по формуле G = т/У (модуль  рода). Здесь т — касательное напряжение, МПа; У — относительный сдвиг (величина безразмерная), характеризуемый относительным искажением прямого угла. Для определения модуля упругости или сдвига при испытаниях одновременно измеряют напряжения и деформации (с высокой точностью).

Технологические свойства древесины имеют большое значение при изготовлении из нее изделий. К ним относятся обрабатываемость резанием, сопротивление истиранию, способность к загибу, склеиванию и окрашиванию, а также способность удерживать гвозди и другие металлические крепления. Многие из них зависят от объемной массы, влажности и элементов анатомического строения древесины.

Обрабатываемость резанием — пилением, строганием, долблением и сверлением — зависит от твердости древесины и определяется усилием на обработку и степенью чистоты поверхности. Твердая и плотная древесина обрабатывается легче и чище, чем мягкая. Чем выше влажность древесины, тем труднее ее обрабатывать; практически невозможно чисто обработать поверхность влажной древесины. На мягкой древесине (ива, тополь, осина, липа) часто остаются царапины и вмятины. Больше усилий затрачивается на обработку древесины с повышенной объемной массой.

Сопротивление истиранию зависит от направления волокон, объемной массы, твердости и влажности древесины. Сопротивление истиранию с торца значительно больше, чем с боковой поверхности. С повышением объемной массы и твердости сопротивление истиранию возрастает, а при увеличении влажности — уменьшается. Истирание древесины происходит в результате постепенного разрушения поверхности под воздействием мелких твердых частиц и трения, при этом мелкие частицы удаляются неровностями трущихся деталей.

Способность древесины к загибу учитывают при изготовлении гнутой мебели, колец, полуколец и других

криволинейных деталей, а также бочек, ободов, дуг, т.е. в тех случаях, когда необходимо придать форму шаблона без разрушения волокон древесины и снижения механической прочности. Способность к загибу, как правило, выше у кольцесосуди-стых пород (дуба, ясеня и др.) и некоторых рассеяннососудистых пород с повышенной пластичностью, например бука. Уплотнение древесины происходит за счет крупных сосудов, без разрушения волокон. Способность древесины к загибу повышается по мере увеличения ее влажности до точки насыщения, а также температуры. При вбивании гвоздей в твердую древесину приходится затрачивать больше усилий. В этом случае в древесине высверливают отверстия диаметром на 0,2-0,3 мм меньше толщины гвоздя.

Способность древесины удерживать гвозди, шурупы и другие крепления имеет большое значение как в строительстве, так и при сборке мебели. Гвоздь, вбитый в древесину, испытывает давление ее отдельных частей, которое и удерживает его за счет трения. Показателем способности древесины удерживать крепления является усилие, необходимое для выдергивания гвоздя (в Н на м

2 поверхности соприкосновения гвоздя с древесиной). Это усилие зависит от породы, направления волокон, объемной массы и влажности древесины. Поперек волокон оно на 25% выше, чем вдоль. С увеличением объемной массы удельное усилие возрастает. При высыхании древесины способность удерживать крепление снижается вследствие уменьшения упругости волокон. Удерживающая способность древесины твердых пород в несколько раз выше, чем мягких. Удельное усилие для выдергивания шурупов при прочих равных условиях в 2 раза выше, чем для выдергивания гвоздей.

Коэффициенты качества древесины. При»использовании древесины в различных отраслях промышленности, если решающее значение имеет не только прочность, но и масса деталей и узлов, изготовленных из разных материалов, комплексным показателем свойств материала, в том числе и древесины, является коэффициент качества.

Коэффициент качества — это отношение показателя механических свойств к плотности материала. Если сравнить коэффициенты качества* различных материалов при растяжении, окажется, что древесина по этому показателю стоит выше многих металлов, соперничая с лучшими сортами стали: Сталь легированная                             0,95-2,3

Стальное литье                                    0,45-0,55

Железо                                               0,32-0,42

Дюралюминий                                    1,1-1,7

Алюминий                                          0,3-0,4

Чугун                                                 0,3-0,51

Древесина:

ель, сосна                                        1,4-2,1

липа                                                1,7-2,4

береза                                              1,9-2,7

Коэффициенты качества могут быть определены для любого показателя прочности. При сравнении показателей хвойных и лиственных пород древесины можно установить, что лиственные породы по многим механическим свойствам превосходят хвойные. Однако показатели качества при сжатии и статическом изгибе у хвойных пород выше, чем у лиственных.

Допускаемые напряжения для древесины. Прочностные показатели, полученные при различных видах нагрузки, являются предельными и не могут служить исходными данными при расчете конструкций из древесины по разным причинам. Во-первых, для удовлетворительной работы деревянных конструкций необходим определенный запас прочности. Во-вторых, в реальных условиях прочность древесины может быть ниже, чем при испытаниях, из-за несовпадения направления волокон, наклона волокон, изменения влажности, пороков в древесине (сучков, гнили и др.), влияния колебаний температуры и т. д. Поэтому при расчете конструкции принимают так называемые допускаемые напряжения. Отношение величины предела прочности к величине допускаемого напряжения называется коэффициентом запасам.

Вследствие анизотропности строения древесины и значительной изменчивости ее свойств во времени и под влиянием различных факторов коэффициенты запаса для нее устанавливаются более высокими, чем для металлов. Коэффициенты запаса для сжатия и скалывания составляют от 3 до 5, при растяжении

.

вдоль волокон — до 8-10. Модуль упругости при приближенных расчетах принимают независимо от породы равным 10000 МПа, если изделие эксплуатируют в сухом помещении, 7000 МПа для элементов, долго находящихся в увлажненном состоянии.

Для расчета элементов из сосны и ели, эксплуатируемы в сухом помещении при длительных нагрузках, принимают следующие допускаемые напряжения, МПа: изгиб и сжатие вдоль волокон — 10; растяжение вдоль волокон — 7; перерезание поперек волокон — 4,5; смятие поперек волокон — 3,5; скалывание вдоль волокон — 1-2; скалывание поперек волокон 0,5. Для древесины ясеня, дуба, клена допускаемые напряжения могут быть выше в 2 раза, кроме скалывающих напряжений, которые выше в 1,6 раза.

Факторы, влияющие на механические свойства древесины

В табл. сопоставлены объемная масса и показатели прочности древесины хвойных и лиственных пород.

Средние показатели механических свойств древесины хвойных и лиственных пород (при 15%-ной влажности)


Общая тенденция состоит в том, что чем плотнее древесина, тем большую прочность Она имеет. Плотность и прочность древесины возрастают, если лес растет на возвышенных местах и песчаных почвах.

Повышение влажности до предела гигроскопичности (до 30%) понижает механические свойства древесины. Высушивание же древесины на 1% (в пределах изменения влажности от 20 до 8%) повышает ее сопротивление сжатию и изгибу на 4%, растяжению — на 1%.

Пороки древесины понижают ее прочность.

Пороками называют недостатки отдельных участков древесины, снижающие ее качество и ограничивающие возможности использования.

Дефектами называют пороки механического происхождения, возникающие в древесине в процессе заготовки, транспортировки, сортировки, штабелевки и обработки.

Ввиду наличия пороков прочность бруса или доски не может быть оценена по результатам испытания малых чистых образцов. Поэтому в отличие от других материалов сорта лесоматериалов устанавливают не по прочности образцов, а на основании оценки характера, размеров и количества пороков.

Похожие статьи

znaytovar.ru

Мебель своими руками: Прочность древесины на изгиб

Древесина хорошо сопротивляется изгибу. По виду излома при испытании  прочности древесины на изгиб можно судить о качестве испытуемого материала. Доброкачественная древесина дает защепистый излом, пересушенная или перестойная, рыхлая или загнившая древесина дает гладкий излом с небольшим количеством тупых выступов и небольших впадин.

В зависимости от направления изгибающего усилия по отношению к годовым слоям различают два вида статического поперечного изгиба: тангентальный, когда направление силы совпадает с касательной к годовым слоям, и радиальный, когда направление силы совпадает с направлением сердцевинных лучей.

Сопротивление древесины изгибу в радиальном направлении несколько выше.

Предел пропорциональности при статическом изгибе для лиственных пород составляет 0,66, для хвойных — 0,71 от временного сопротивления.

В связи с тем, что одна половина поперечного сечения бруска при изгибе работает на сжатие, а другая на растяжение, величина временного сопротивления статическому изгибу колеблется между величинами сопротивлений сжатию и растяжению вдоль волокон. Соотношение между временными сопротивлениями изгибу и сжатию в среднем равно 2,0 при колебаниях от 1,7 до 2,15.

Таблица 27 Соотношение между временными сопротивлениями статическому изгибу поперек волокон и сжатию вдоль волокон (σизг: σсж)





























Порода дереваСоотношение

σизг: σсж

Береза1,8
Бук2,1
Дуб2,2 I
Клен2,0
Осина1,9

Влияние влажности на сопротивление древесины при статическом изгибе сказывается довольно значительно и определяется коэффициентом αи =0,04, т. е. изменение влажности на 1% изменяет временное сопротивление изгибу на 4%.

Характеристикой вязкости древесины или обратного ей свойства — хрупкости — может служить сопротивление древесины ударному изгибу. Мерой сопротивления древесины ударному изгибу является работа, затраченная на излом. Эта работа будет тем больше, чем больше вязкость древесины. Чем меньше будет сопротивление ударному изгибу, тем более хрупкой будет древесина.

Сопротивление древесины ударному изгибу определяется путем разрушения образца качающимся маятником на маятниковом копре. Маятник, вес которого известен, поднимается на установленную высоту и получает определенный запас энергии (в кг/м). При свободном падении часть этой энергии будет израсходована ,на разрушение образца при ударе. Измерив работу Q кг/м, затраченную на перелом образца при ударе, определяют величину А сопротивления ударному изгибу по формуле

A = Q/bh2

где b и h —- ширина и высота сечения образца в см. С уменьшением влажности уменьшается и сопротивление древесины ударному изгибу. Однако практически влажность в пределах 8—20% влияния на сопротивление ударному изгибу не оказывает.



  • разметочный рейсмус

brigadeer.ru

Прочность древесины

Прочностью называется способность древесины сопротивляться раздражению под действием механических нагрузок. Прочность древесины зависит от направления действующих нагрузок, породы. Она характеризуется пределом прочности – напряжением, при котором разрушается образец.

Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении связанной влаги прочность древесины уменьшается (особенно при влажности 20…25%). Дальнейшее повышение влажности за предел гигроскопичности (30%) не оказывает влияния на показатели прочности древесины.

Кроме влажности на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок. Поэтому при проведении испытаний древесины придерживается заданной скорости нагружения на каждый вид испытания.

Различают основные виды действий сил: растяжение, сжатие, изгиб, скалывание.

Предел прочности при растяжении. Средняя величина придела прочности при растяжении вдоль волокон для всех пород составляет 130 МПа. На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположения волокон вызывает снижение прочности.

Прочность древесины при растяжении поперек волокон очень мала и в среднем составляет 1/20 предела прочности при растяжении вдоль волокон, то есть 6,5 МПа. Поэтому древесина почти не применяется в деталях, работающих на растяжение поперек волокон. Прочность древесины поперек волокон имеет значение при разработке режимов резания и режимов сушки древесины.

Предел прочности при сжатии. Различают сжатие вдоль и поперек волокон. При сжатии вдоль волокон деформация выражается в небольшом укорочении. Разрушение при сжатии начинается с продольного изгиба отдельных волокон; во влажных образцах и образцах из мягких и вязких пород оно проявляется как смятие торцов и выпучивание боков, а в сухих образцах и в твердой древесине вызывает сдвиг одной части образца относительно другой.

Прочность древесины при сжатии поперек волокон ниже, чем вдоль волокон, примерно в8 раз. При сжатии поперек волокон не всегда можно точно установить момент разрушения древесины и определить величину разрушения груза.

Древесину испытывают на сжатие поперек волокон в радиальном и тангенциальном направлениях.

Предел прочности при статическом изгибе. При изгибе, особенно при сосредоточенных нагрузках, верхние слои древесины испытывают напряжение сжатия, а нижние – растяжение вдоль волокон. Примерно по середине высоты элемента проходит плоскость, в которой нет ни напряжения сжатия, ни напряжения растяжения. Эту плоскость называют нейтральной; в ней возникают максимальные касательные напряжения. Предел прочности при сжатии меньше, чем при растяжении, поэтому разрушение начинается в растянутой зоне и выражается в разрыве крайних волокон.

Предел прочности древесины зависит от породы и влажности. При изгибе в 2 раза больше предела прочности при сжатии вдоль волокон.

Прочность древесины при сдвиге. Внешние силы вызывающие перемещение одной части детали по отношению к другой, называются сдвигом. Различают три случая сдвига: скалывание вдоль волокон, поперек волокон и перерезание.

Прочность при скалывании вдоль волокон составляет 1/5 прочности при сжатии вдоль волокон.

Предел прочности при скалывании поперек волокон примерно в 2 раза меньше предела прочности при скалывании вдоль волокон. Прочность древесины при скалывании поперек волокон в 4 раза выше прочности при скалывании вдоль волокон.

Сопротивление древесины скалыванию. Раскалываемостью называется способность древесины под действием клина разделяться на части вдоль волокон. Раскалывание древесины по действию силы и характеру разрушения напоминает растяжение поперек волокон, которое в этом случае является внецентренным, то есть результатом действия растяжения и изгиба.

Растяжение может проходить по радиальной и тангенциальной плоскостям. Сопротивление по радиальной плоскости у древесины лиственных пород меньше, чем по тангенциальной. Это объясняется влиянием сердцевинных лучей. У хвойных пород, наоборот, скалывание по тангенциальной плоскости меньше, чем по радиальной. При тангенциальном раскалывании у хвойных пород разрушение происходит по ранней древесине, прочность которой значительно меньше прочности поздней древесины.

www.apxu.ru

Механические свойства дерева

Механическими свойствами дерева называется его способность сопротивляться внешним усилиям. Всякое сооружение находится под действием известных нагрузок; эти

нагрузки состоят из собственного веса, веса снега, толпы людей, веса машины и оборудования, давления от ветра и т. д.

Под действием нагрузок или внешних сил в частях сооружения появляются некоторые усилия. Эти усилия могут быть по своему характеру различны. Например, в стойке, поддерживающей крышу, междуэтажное перекрытие или стену, появляются усилия сжатия. Брус, лежащий на двух стенах, под нагрузкой изгибается. Затяжка висячих стропил растягивается.

Мауерлат или опорная подушка под весом стропил будет сминаться. Шпонки в составной балке скалываются. Растяжение, сжатие, изгиб, скалывание и смятие являются основными видами усилий в частях сооружений.

Весьма часто могут возникнуть одновременно растяжение и изгиб или сжатие и изгиб. Например, если к затяжке подвесить потолок, то под действием веса потолка к растяжению добавится изгиб. Стропильная нога в той же висячей ферме будет под действием веса кровли и снега изгибаться и кроме того сжиматься.

В зависимости от величины и характера усилий для каждого отдельного элемента конструкции подбираются соответствующие размеры. Кроме того, сообразуясь с усилием, следует подбирать и качество древесины. Поэтому строителя должно интересовать, какое можно допустить усилие на то или другое сечение. Для того, чтобы ответить на этот вопрос, надо, очевидно, знать, какую силу следует приложить к сечению, чтобы его разрушить. Это усилие называется разрушающим усилием или временным сопротивлением. Зная разрушающее усилие, можно, очевидно, определить и безопасное усилие, взяв его с известным запасом прочности. Безопасное усилие называется чаще допускаемым усилием. Если например стойка разрушается при грузе в 75 т, то, взяв запас -прочности равный пяти, получим, что допускаемая нагрузка равна 15 т.

Исследованием временных сопротивлений занимаются в специальных лабораториях, где на особых машинах определяют разрушающие нагрузки для различных случаев работы дерева.

При этом для упрощения относят величины временных и допускаемых усилий к единице площади сечения образца, т. е. к одному квадратному сантиметру. Если, например, при сжатии деревянный кубик сечением 2×2 см разрушается при 1200 кг, то считать что временное его сопротивление равно 1200:4 = 300 кг на 1 кв см.

В результате изучения сопротивляемости дерева оказалось, что прочность его в различных направлениях разная. Это объясняется волокнистым строением древесины. Мы уже говорили, что дерево можно представить себе в виде пучка мельчайших трубок, довольно слабо между собой связанных. Следовательно, образец, взятый для испытания, будет разно сопротивляться растяжению вдоль волокон и растяжению поперек волокон. Дадим некоторые, величины различных сопротивлений.

Временное сопротивление сжатию вдоль волокон в дереве равно около 300 — 400 кг на кв см. Это значит, что кубик размером 2×2х2 см можно разрушить силой 2×2х2×350 = 2800 кг.

Однако следует иметь в виду, что разрушающая сила будет значительно меньше при сжатии стойки. Это объясняется тем, что стойка при сжатии изгибается и ломается. Причем изгиб сжатой стойки наступит тем раньше, чем стойка длиннее. Безопасное или допускаемое усилие на 1 кв см при сжатии равно для хорошей сухой сосны около 100 кг на кв см. При длинных стойках оно быстро падает.

Поперек волокон дерево на сжатие работает значительно хуже, так как при этом получаются большие обмятия. Это происходит вследствие того, что пучок трубочек со сравнительно тонкими стенками быстро сминается.

На растяжение дерево работает лучше, чем на сжатие, примерно в два раза. Временное, сопротивление его равно около 600 — 900 кг на кв см.

Однако надо иметь в виду, что доски и бревна обыкновенно бывают с сучками, действие которых подобно действию отверстий. Растянутое сечение ослабляется при этом в зависимости от величины сучков. Очевидно, что это ослабление понижает способность сопротивляться растяжению. Поэтому допускаемое усилие должно назначаться с большим запасом прочности. Допускаемое усилие принимается для сухой хорошей сосны в 100 кг на 1 кв см.

Если попытаться растянуть дерево поперек волокон, то окажется, что в этом случае сопротивление растяжению почти отсутствует, в особенности при наличии трещин.

При изгибе бруса нижняя его часть растягивается, а верхняя сжимается. Поэтому временное сопротивление на изгиб является средней величиной между такими же сопротивлениями на сжатие и растяжение. Соответственно этому допускаемое усилие на единицу длины также равно допускаемому усилию при сжатии или растяжении. Сопротивление скалыванию является наиболее слабым местом и дереве. Как мы уже указывали, межклеточный клей обладает весьма слабыми склеивающими свойствами. Если два бруса склеить обыкновенным столярным клеем, то при раскалывании дерево будет колоться уже не по клееному шву, а рядом. Поэтому временное сопротивление образцов на скалывание вдоль волокон почти в 10 раз меньше, чем на сжатие. Еще хуже работает дерево на скалывание поперек волокон. Надо весьма внимательно относиться, поэтому ко всем частям, работающим на скалывание, выбирая для них лес без трещин, чтобы не создавать добавочных ослаблений.

Наконец, смятие дерева зависит также от того, как расположены волокна по отношению к сминающей нагрузке. В общем, сопротивление смятию немногим отличается от сопротивления сжатию. Следует иметь в виду, что величина смятия поперек подокон очень велика. Все механические сопротивления сильно зависят от породы дерева, влажности, наличия пороков и условий, в которых дерево росло. Наиболее прочным из хвойных пород является лиственница, затем идет сосна, ель, пихта. Увеличение влажности быстро уменьшает сопротивляемость дерева. Чем суше лес, тем он прочнее. Естественные пороки дерева, т. е. сучковатость, косослой, свилеватость различно влияют на различные сопротивления. Наиболее опасными они являются для растяжения и изгиба. Условия произрастания, т. е. климат, почва, затененность расположения дерева в лесонасаждении также отражаются на механической прочности. Наиболее прочным является мелкослойное дерево с большим количеством летней древесины, выросшее на сухой песчаной почве.

ПОХОЖИЕ СТАТЬИ:

  • Рекомендуем почитать —

www.technologywood.ru

Измерение показателя прочности древесины при механических нагрузках — Древология

Благодаря своей устойчивости к механическим воздействиям, а также легкости обработки, древесина является очень популярным материалом, используемым в самых разных отраслях производства. Прочность древесины может в несколько раз превосходить материалы, изготовленные человеком, но не нужно ее переоценивать.

Под прочностью древесины понимается сопротивляемость материала механическим нагрузкам. Это то давление, под которым образец древесного материала деформируется или разрушается полностью.

Данный параметр зависит не только от направленности этих нагрузок, но и от породы древесного материала.

Но и у нее есть предел. Предел прочности древесины выявляют путем сложных и занимающих довольно продолжительное время тестов и опытов, на результативность которых влияет множество факторов.

Одним из факторов, влияющих на прочность древесины, является связанная влага. Чем её больше, тем меньше прочность.

Помимо этого, важным показателем прочности древесины является её способность воспринимать продолжительные нагрузки.  В перечень механических нагрузок, которые должен пройти испытуемый образец, входят: сжатие, изгиб, а также растяжение.

При точечных нагрузках на определенные слои древесного образца происходят различные реакции. Так, воздействием на наружные слои древесины, выявляется сопротивляемость образца силе сжатия, а на внутренние – силе растяжения.

 

Предел прочности древесины при изгибе

Прочность на изгиб определяется при направленных друг на друга воздействиях на два противоположных участка образца.

Предел прочности древесины при изгибе зависит не только от влажности самого образца, но и породы дерева. На основе большинства тестов и проверок было выявлено, что при изгибе образца древесины вдоль пролегания волокон, её показатель предела прочности превышает почти в 2 раза, чем при изгибе поперек.

 

Предел прочности при сжатии древесины

Под таким параметром, как предел прочности при сжатии древесины скрывается способность материала противостоять деформации. Данные испытания над опытным образцом древесного материала также проводят вдоль и поперек волокон. Причем уровень деформации материала напрямую зависит от его влажности, так в просушенных образцах деформация проявляется в виде параллельных сдвигов, когда в более влажных образцах древесины происходит увеличение ребер и сжатие торцевой части.

Так же необходимо отметить, что степень прочности древесных материалов при оказываемом давлении вдоль опытного образца превосходит в 10 раз, чем у образцов подвергнутых поперечному давлению. Данный факт обусловлен тем, что при поперечном сжатии установить точный момент деформации опытного образца и определить точное давление при разрушении не является возможным.

 

Предел прочности образца древесины на растяжение

Для того что бы определить прочность древесины на растяжение, её, как вы догадались, растягивают в разных направлениях.

У большинства древесных пород данный параметр находится на отметке 130 Мпа (вдоль) и 7 Мпа (поперек). Эти свойства дерева необходимо учитывать во время осуществления просушки древесины или же выбора вариантов распила материала.

Состаривание древесины не влияет на предел прочности!

drevologia.ru

Прочность древесины при растяжении вдоль волокон.

Прочность при растяжении вдоль волокон определяют на образце, форма и размеры которого показаны на рис. 49. Заготовки для образца получают путем выкалывания, а не выпиливания, чтобы избежать перерезания волокон. Назначение сложной формы образца с массивной головкой и тонкой рабочей частью — не допустить преждевременного разрушения образца от напряжений на смятие и скалывание, возникающих в головках его в процессе испытания, при зажиме в головках машины.

Рис. 49. Форма и размеры (мм) образца для испытаний на растяжение вдоль волокон.

Перед укреплением в головках машины измеряют сечение рабочей части образца, а в каждую головку вставляют стальной стержень, высотой 18 мм, предохраняющий головку от чрезмерного смятия во время испытания. Нагружение проводят равномерно со средней скоростью 1500±400 кГ/мин на весь образец. Образец доводят до разрушения и по шкале машины отсчитывают нагрузку Рmах с точностью 5 кГ. Предел прочности вычисляют с точностью 5 кГ/см2 по формуле:

Влияние влажности при растяжении вдоль волокон незначительно. Деформация при растяжении выражается в некотором (незначительном) удлинении образца; разрушение происходит в виде разрыва тканей, причем при высокой прочности разрыв бывает длинноволокнистым или защепистым, а при низкой прочности — раковистым, почти гладким (рис. 50).

Рис. 50. Характер разрушения при растяжении вдоль волокон: сверху — защепистый разрыв; внизу — раковистый.

Древесина обладает высокой прочностью при растяжении вдоль волокон; среднюю величину ее для древесины разных пород можно принять 1200 кГ/см2. Однако использовать это свойство на практике в полной мере трудно из-за сложности закрепления концов детали, где развиваются скалывающие напряжения и происходит смятие древесины. Так как древесина плохо сопротивляется этим видам сил, практически разрушение обычно происходит не в форме разрыва, а в местах закрепления детали — в виде скалывания или смятия. Вследствие этого древесина сравнительно редко применяется для работы на растяжение вдоль волокон.

Таблица 33. Прочность древесины при растяжении вдоль волокон.

Порода

Предел прочности, кГ/см2, при влажности

Порода

Предел прочности, кГ/см2, при влажности

15%

30 % и более

15%

30% и более

Лиственница

1225

965

Ясень

1390

1095

Сосна

1010

790

Граб

1345

1060

Ель

1005

790

Осина

1200

945

Кедр

885

695

Бук

1180

925

Пихта сибирская

655

515

Липа

1160

910

Акация белая

1690

1095

Ольха

965

760

Береза

1610

1265

Тополь

870

685

Прочность при растяжении вдоль волокон подвержена довольно сильным колебаниям даже для древесины одной и той же породы. Это объясняется тем, что на прочность при растяжении существенное влияние оказывают особенности строения древесины; малейшее отклонение от правильного расположения волокон влечет за собой заметное уменьшение прочности. Предел пропорциональности при растяжении вдоль волокон составляет 0,83 от величины предела прочности для древесины хвойных пород (лиственница, сосна, пихта) и 0,70 для лиственных кольцесосудистых. (дуб, ясень).

Рис. 51. Форма и размеры образцов для испытания на растяжение поперек волокон (в радиальном направлении).

www.drevesinas.ru

11. Работа древесины при растяжении, сжатии, изгибе

Образец на сжатие – призма 20х20х30 мм, на растяжение – пластина.

Предел прочности древесины при растяжении вдоль волокон в стандартных чистых образцах (влажностью 12%) высок – для сосны и ели он в среднем 100 МПа. Модуль упругости 11-14 ГПа. Наличие сучков и присучкового косослоя значительно снижает сопротивление растяжению.

При ослаблении деревянных элементов отверстиями и врезками их прочность снижается больше, чем получается при расчете по площади нетто. Здесь сказывается отрицательное влияние концентрации напряжений у мест ослаблений. Опыты показывают также, что прочность при растяжении зависит от размера образца; прочность крупных образцов в результате большей неоднородности их строения меньше, чем мелких.

При разрыве поперек волокон в следствии анизотропности строения древесины предел прочности в 12-17 раз меньше, чем при растяжении вдоль волокон. Следствием этого является большое влияние косослоя, при котором направление усилия не совпадает с направлением волокон.

Испытания стандартных образцов на сжатие вдоль волокон дают значение предела прочности в 2-2,5 раза меньшие, чем при растяжении. Для сосны и ели при влажности 12% предел прочности на сжатие в среднем 40 МПа, а модуль упругости примерно такой же, как при растяжении. Кроме того, в деревянных конструкциях размеры сжатых элементов обычно назначаются из расчета на продольный изгиб, т.е. при пониженном напряжении, а не из расчета на прочность. Благодаря указанным особенностям работа сжатых элементов в конструкциях более надежна, чем растянутых.

При поперечном изгибе значение предела прочности занимает промежуточное положение между прочностью на сжатие и растяжение. Для стандартных образцов из сосны и ели при влажности 12% предел прочности при изгибе в среднем 75 МПа. Модуль упругости примерно такой же, как при сжатии и растяжении. Поскольку при изгибе имеется растянутая зона, то влияние сучков и косослоя значительно.

Определение краевого напряжения при изгибе по обычной формуле σ=М/W соответствует линейному распределению напряжений по высоте сечения и действительно в пределах небольших напряжений. При дальнейшем росте нагрузки и увеличении кривизны эпюра сжимающих напряжений в соответствии с диаграммой на сжатие принимает криволинейный характер. Одновременно нейтральная ось сдвигается в сторону растянутой кромки сечения. При этом фактическое краевое напряжение сжатия меньше, а напряжение растяжения больше вычисленных по формуле.

Т.к. древесина полимерный, упругий материал, то в расчет беретсяI стадия.

Условный предел прочности при изгибе зависит от формы поперечного сечения. При одном и том же моменте сопротивления у круглого сечения он больше, чем у прямоугольного, а у двутаврового сечения меньше, чем у прямоугольного. С увеличением высоты сечения предел прочности снижается. Все эти факторы учитываются в расчете введением соответствующих коэффициентов к расчетным сопротивлениям.

12. Работа древесины при смятии и скалывании

Различают смятие вдоль, поперек волокон и под углом к ним. Прочность древесины на смятие вдоль волокон, например, в стыках сжатых элементов, мало отличается от прочности на сжатие вдоль волокон, и действующие нормы не делают различия между ними. Смятию поперек волокон древесина сопротивляется слабо. Смятие под углом занимает промежуточное положение. Смятие поперек волокон характеризуется в соответствии с трубчатой формой волокон значительными деформациями сминаемого элемента. После сплющивания и разрушения стенок клеток происходит уплотнение древесины, уменьшение деформаций и роста сопротивления сминаемого образца.

Вотличие от ранее рассмотренных случаев о работе древесины на смятие поперек волокон приходится судить главным образом по значению допустимых в эксплуатации деформаций. За нормируемый предел здесь обычно принимается напряжение при некотором условном пределе пропорциональности. Этот предел имеет наименьшее значение при смятии по всей поверхности, среднее значение при смятии на части длины и максимальное при смятии на длины и ширины. В двух последних случаях деформация уменьшается благодаря поддержке сминаемой площадки соседними незагруженными участками древесины.

Скалывание:

  1. Одностороннее

τ = N cosα / Fск

Е=10000 МПа, G=500 МПа

  1. Двухстороннее

k= τmax/τ – коэффициент концентрации

β=0,25 – одностороннее

β=0,125 – двухстороннее

е=h/2 – одностороннее

е=0,25h – двухстороннее.

lск ≤ hвр

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *